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Abbreviations 

AGA  Appropriate for gestational age 

ALA  Alpha-linolenic acid 

ARA  Arachidonic acid 

BMC  Bone mineral content 

BMDP  Bone mineral deficiency of prematurity 

BPD  Bronchopulmonary dysplasia  

Ca  Calcium 

CA  Corrected age 

Cl  Chloride 

CMV  Cytomegalovirus 

CPAP  Continuous positive airways pressure 

DHA  Docosahexaenoic acid 

DHM  Donor human milk 

EFSA  European Food Safety Authority 

EN  Enteral nutrition  

FGR  Fetal growth restriction 

FM  Fat mass 

FFM  Fat-free mass 

GF  Growth faltering 
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GPP  Good practice point 

GOR  Grade of Recommendation (A-C) 

GR  Gastric residual 

HC  Head circumference 

HM  Human milk 

HMOs  Human milk oligosaccharides 

IU  International units 

IUGR  In-utero growth restriction 

K  Potassium 

LA  Linoleic acid 

LOE  Level of evidence (1-4) 

MEF  Minimum enteral feeding 

Mg   Magnesium 

MOM  Mother’s own milk 

N  Nitrogen 

Na  Sodium 

NEC  Necrotizing enterocolitis  

NG  Nasogastric 

OG  Orogastric 

PER  Protein:energy ratio 

P  Phosphorus  

PN  Parenteral Nutrition  

PUFA  Polyunsaturated fatty acid 

RCT  Randomised controlled trial 

REE  Resting energy expenditure 
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ROP  Retinopathy of prematurity  

SD  Standard deviation 

SGA  Small for gestational age 

VLBW Very low birthweight 

WHO  World Health Organisation 
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Abstract  

Objectives 

To review the current literature and develop consensus conclusions and recommendations on 

nutrient intakes and nutritional practice in preterm infants with birthweight <1800g.  

Methods 

The European Society of Paediatric Gastroenterology, Hepatology and Nutrition 

(ESPGHAN) Committee of Nutrition (CoN) led a process that included CoN members and 

invited experts. Invited experts with specific expertise were chosen to represent as broad a 

geographical spread as possible. A list of topics was developed, and individual leads were 

assigned to topics along with other members, who reviewed the current literature. A single 

face-to-face meeting was held in February 2020. Provisional conclusions and 

recommendations were developed between 2020-2021, and these were voted on 

electronically by all members of the working group between 2021-2022. Where >90% 

consensus was not achieved, online discussion meetings were held, along with further voting 

until agreement was reached.  

Results 

In general, there is a lack of strong evidence for most nutrients and topics. The summary 

paper is supported by additional supplementary digital content that provide a fuller 

explanation of the literature and relevant physiology: Introduction and overview; human milk 

reference data; intakes of water, protein, energy, lipid, carbohydrate, electrolytes, minerals, 

trace elements, water soluble vitamins, and fat soluble vitamins; feeding mode including 

mineral enteral feeding, feed advancement, management of gastric residuals, gastric tube 

placement and bolus or continuous feeding; growth; breast milk buccal colostrum, donor 

human milk, and risks of cytomegalovirus infection; hydrolysed protein and osmolality; 

supplemental bionutrients; and use of breastmilk fortifier. 
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Conclusions 

We provide updated ESPGHAN CoN consensus-based conclusions and recommendations on 

nutrient intakes and nutritional management for preterm infants 
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What is known  

 Nutrient intakes and nutritional practices have a major impact on short-term 

morbidities and long-term outcomes 

 The available literature has expanded dramatically in the 12 years since the previous 

The European Society of Paediatric Gastroenterology, Hepatology and Nutrition 

(ESPGHAN)  position paper was developed  

What is new 

 We provide an expert consensus on conclusions and recommendations for nutrient 

intakes and nutritional practices for preterm infants with a birthweight of <1800g 

 We provide recommendations that can be used in clinical practice, but highlight the 

lack of strong evidence in several topic areas and the need for further high-quality 

research especially studies that assess long-term functional outcomes 
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Introduction  

The Committee of Nutrition (CoN) of the European Society for Pediatric Gastroenterology, 

Hepatology and Nutrition (ESPGHAN) recognised the need to provide an update of the 

previous position paper on enteral nutrition for preterm infants and this was approved by the 

ESPGHAN council in 2019. The working group was coordinated by members of CoN but 

recognised the benefit of including additional experts. An initial planning meeting was held as 

in Oslo in March 2019, at which potential topics were discussed and a provisional list of 

sections were developed. A lead writer was assigned to each chapter to initiate literature 

reviews and write the first drafts. We met in Amsterdam in February 2020 at which broad 

consensus was achieved for most topics. Literature searching and review commenced in 2019 

and continued until December 2020. Conclusions and recommendations were graded according 

to level of evidence (LOE) and grade of recommendation (GOR), and all received >90% 

consensus (1, 2) (see supplementary digital content, SDC no.1, 

http://links.lww.com/MPG/C974  for further details on methods). 

This paper provides evidenced informed conclusions and recommendations for clinicians, and 

EPSGHAN CoN consider this to be a position paper derived by expert consensus. The lack of 

strong and robust data in many areas imply we do not consider it to be a robust guideline to be 

adopted without consideration for local contexts and individual infants. We recognise multiple 

situations where variation in clinical practice is likely to be appropriate and strongly support 

the need for further research that might reasonably test or study nutrient intakes or nutritional 

strategies that differ from our current position. We strongly support the use of human milk and 

recognise that the variation in nutrient density and absorption make precise recommendations 

for supplements or fortifiers challenging. We also recognise the need to provide lactation 

support and hospital policies, guidelines and environments that enable the provision of 

mother’s own milk.  We provide justification for our assumptions of the average content of 
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human breastmilk in SDC no.2. Neonatal nutrition research is extremely active, and it is likely 

that alternative approaches and recommendations may be preferable as our knowledge expands 

over the next 10 years. ESPGHAN is not responsible for the practices of physicians or other 

healthcare professionals and provides position papers as indicators of best practice only. 

Diagnosis and treatment is at the discretion of the healthcare provider. 

Water (see supplementary digital content no.3, http://links.lww.com/MPG/C974 ) 

Water is the major constituent of the human body and a key component of enteral nutrition, 

as an essential carrier for nutrients and metabolites. Preterm infants have high fluid 

requirements due to immature renal function, high water losses, higher surface area to body 

volume ratio, and because fluid needs are proportional to growth rates.  

Determining water requirements is difficult, since a certain volume of water is needed both to 

maintain body homeostasis, cardiovascular and kidney function, and to provide adequate 

nutritional intake. These volumes may not be equal, depending on the individual clinical 

situations and dietary needs.  The optimal water intake may also differ depending on 

macronutrient intakes as higher intakes of protein likely requiring higher fluid intakes. 

Furthermore, the composition of milk feeds (fortification/formula) affects milk osmolality 

and the renal load, the latter may be a further factor in determining fluid intakes in preterm 

infants with limited renal concentration ability and excretory capacity (3). Although 

prospective studies have demonstrated improved growth with feed volumes up to 200 

mL/kg/d (4, 5) caution should be taken in high intake volumes, especially in infants with 

chronic lung disease or large patent arterial duct. Very few studies have explored outcomes in 

infancy.  

Conclusions, Recommendations  

C1: Water requirements show considerable inter- and intra-individual variation, especially in preterm 

infants LOE 2++ 

ACCEPTED

Copyright © ESPGHAN and NASPGHAN. All rights reserved

http://links.lww.com/MPG/C974
nb12425
Highlight



13 
 

C2: Water volume needed to maintain body homeostasis, cardiovascular and kidney function may be 

different from the volume needed to provide adequate nutrient intakes LOE 3 

C3: In fully enterally fed preterm infants, water balance, hydration status and renal function should be 

regularly assessed and considered for the administration of fluid intake LOE 2++ 

R1: Most stable growing infants will require fluid intakes of 150-180 mL/kg/d to achieve appropriate 

nutrient intakes. GOR B  

R2: If nutrition needs can be met, fluid intake as low as 135 ml/kg/d may be considered safe 

to maintain body homeostasis and avoid renal compromise. GPP 

R3: In individual preterm infants, enteral fluid intakes up to 200 ml/kg/d may be appropriate 

and safe depending on current clinical status. GPP  

Energy (see supplementary digital content no.4, http://links.lww.com/MPG/C974 ) 

Energy is required by all cells of the body. Energy supply needs to meet resting energy 

expenditure (REE), plus the requirements of any physical activity, diet induced 

thermogenesis, and importantly for preterm infants, tissue deposition (growth) (6). Since REE 

measurements in healthy growing preterm infants also include 1-1.2 kcal/kg weight gain (7), 

REE is directly related to growth rate. Accumulating evidence suggest that REE in preterm 

infants is around 35-60kcal/kg/day when full enteral feeds are reached at around 2-4 weeks of 

age, rising with postnatal age up to 55-70kcal/kg/day (8-13). Meta-analysis of these data 

suggests a range for REE of 60-70kcal/kg/day, depending on growth rate. 

Energy for growth represents energy deposition, and this will vary according to the 

composition of weight gain, with protein and fat deposition representing 5.65 and 9.25kcal 

respectively per gram of tissue. The estimated average energy requirements for growth are 

~3.6-4.7 kcal/g (14, 15), plus REE. Therefore, to achieve 17-20g/kg/day weight gain, and 

assuming the composition of that weight gain is 13% protein and 20-30% fat, the 

metabolizable energy needed for growth based on an REE of 60-70kcal/kg/day would be 

106-138kcal/kg/day. Allowing for energy lost in stool (5-10%) (16, 17), this equates to a total 
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energy intake of approximately 115-160kcal/kg/day, regardless of feed type. The upper limit 

is slightly higher than the 110-135kcal/kg/day recommended in 2010 (18), though is 

extrapolated from higher rates of growth and fat deposition. A range of 115-140kcal/kg/day is 

sufficient for adequate growth, and fits with data from RCTs of formula milk or fortifiers (19-

25) and cohort studies aimed at implementing the previous recommendations in clinical 

practice (5, 26-35). 

A key challenge in determining energy requirements is the interdependence of the energy 

fractions provided by the respective macronutrients. Delivery of a protein:energy ratio (PER) 

which enables accretion of fat free mass (FFM) and fat mass (FM) in the appropriate 

proportions might have implications for long-term health (36, 37). Studies suggest that the 

optimal enteral PER for preterm infants is 2.8 - 3.6g/100kcal (19, 38), with PERs at the 

higher end of this range associated with improved weight gain and FFM accretion. The use of 

this ratio is however only meaningful if energy and protein intakes are within the 

recommended ranges. At equal protein and energy intakes, carbohydrate may result in higher 

nitrogen retention compared with fat (39, 40) although this may be due to differences in 

absorption rates. Hence, the relative proportion of the macronutrients in the diet also need to 

be considered.   

Since recommendations for energy intake depend on growth targets, we base our 

recommendations on the aim of supporting growth, body composition and nutrient retention 

like the in-utero fetus (18), whilst acknowledging that nutritional needs are different in the 

ex-utero environment. It is important to underline that these recommendations do not 

consider changes in energy needs related to acute illness or chronic disease states. 

Conclusions, Recommendations 

C1: The REE for healthy, growing very preterm infants is approximately 60-70 kcal/kg/day 

LOE 1+ 
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C2: Metabolizable energy intake needs to meet REE plus the energy needed for growth, 

adjusted for energy lost in stool. LOE 1- 

C3: To promote optimal quality of growth and longer-term outcomes, energy intake 

recommendations also require consideration of the energy fractions provided by the 

respective macronutrients LOE 1 

R1: A reasonable range of total energy intake for most healthy growing preterm infants is 

115-140kcal/kg/day. GOR A 

R2: Energy intakes >140kcal/kg/day may be needed where growth is below the 

recommended range but should not be provided until protein and other nutrient sufficiency 

has been ensured and should not exceed 160kcal/kg/day. GOR B 

R3: Provided that energy and protein intakes are within the recommended ranges, a protein to 

energy ratio of 2.8-3.6g/100kcal is recommended GOR B   

Protein (see supplementary digital content no.5, http://links.lww.com/MPG/C974 ) 

Amino acids are the building blocks for proteins, and selected amino acids have specific 

functions and are precursors for other metabolites (41, 42). Amino acids that are in excess for 

protein synthesis capacity are irreversibly oxidised to CO2 and ammonia, which is detoxified 

into urea. Protein intake is the main driver of lean body mass growth provided sufficient 

energy intake. Protein quality is important (43). Human milk contains approximately 25% 

non-protein nitrogen, but its nutritional role remains unclear.  

With the factorial approach it is estimated that protein accretion is ~2.5 g/kg/day in infants 

weighing 500 g and ~2.2 g/kg/day at a body weight of 1800 g (44). Preterm infants have 

obligatory nitrogen losses of ~1 g protein/kg/d, and intestinal utilisation of amino acids and 

suboptimal dietary protein absorption require an additional 0.5 g/kg/d. An extremely preterm 

neonate requires ~4 g/kg/d of enteral protein of optimal quality to achieve the intrauterine 

accretion rate (45). The protein content of human milk is variable with ~1 g/100 mL in 
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mature breastmilk and 1.5-2.0 g/100 mL in colostrum (46-48). This means that a typical 

intake of 150 to 180 mL/kg/d of unfortified human milk in stable preterm infants will not 

meet protein requirements. 

Several studies have explored optimal protein intakes showing higher growth rates (weight, 

length and head circumference) with increased protein intakes; however, most are under-

powered and, in most studies, actual protein intakes are often estimated rather than directly 

measured. There is no effect of protein intake on key neonatal morbidities or growth 

outcomes in infancy, and variation in study designs and reporting make meta-analyses 

challenging.  

There are no easy methods to determine optimal protein intakes for individual infants. Whilst 

there is a strong correlation between protein intake and plasma urea it is unclear whether 

plasma urea concentration provides information on protein synthesis.  

In addition to being important for growth, individual amino acids may have selective 

functions. These include glutamine (immune function), arginine (gut health), and taurine 

(brain development), although extra administration of these individual amino acids has not 

been shown to result in clinical benefits. 

Conclusions, Recommendations 

 C1:  Protein content of human milk decreases rapidly over time, from around 1.5-2.0 g/dL 

before two weeks of age to around 1.0-1.5 g/dL during the weeks thereafter. Donor milk 

contains around 0.9-1.0 g/dL of protein or less. LOE 1++ 

C2: Based on a factorial approach, an extremely preterm neonate would require around 4.0 

g/kg/d of enteral protein of optimal quality to grow at a comparable rate as intrauterine. LOE 

2+ 

C3: Several recent RCTs have been performed comparing higher versus more moderate 

protein intakes, however most of these studies are underpowered and protein intake is 
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measured imprecisely meaning it is difficult to draw firm conclusions. It seems that enteral 

protein intakes ranging from 3.5 up to 4.5 g/kg/d are justified to support somatic growth 

(including head growth), although data on functional outcomes are extremely limited. LOE 

1- 

C4: The evidence for cut-off values of plasma urea concentrations to guide protein intake is 

very limited and concentrations may be affected by immature glomerular filtration rate as 

well. Yet, elevated urea concentrations in the absence of fluid or renal derangements indicate 

that proteins are not fully used for protein synthesis but are oxidised instead. This thus hints 

at either optimising concomitant nutritional intakes or decreasing protein intake. LOE 1- 

C5: Separate supplementation of certain extra amino acids (e.g., glutamine, arginine, or 

taurine) may reduce several neonatal morbidities but data are limited. Whilst arginine appears 

promising in reducing NEC rates, the number of infants studied remains limited. LOE 1- 

R1: We strongly recommend very preterm infants are given at least 3.5 to 4.0 g protein/kg/d 

together with sufficient other macro- and micronutrients. Protein intake may be further 

increased up to 4.5 g/kg/d where growth is slow, provided protein quality is good, 

concomitant energy and other micronutrient intakes are optimal, and there are no other causes 

for suboptimal growth. GOR A 

R2: We conditionally recommend monitoring plasma urea at regular intervals. Low urea 

concentrations after the first few weeks of life may indicate enteral protein intakes can be 

increased up to 4.5 g/kg/d. If urea concentrations are above 5.7 mmol/L (34 mg/dL; or 16 mg 

N/dL) in the absence of fluid or renal derangements, while providing sufficient concomitant 

energy, lowering of protein intake should be considered. GOR C  

R3: No recommendation can be made regarding the use of additional supplementation with 

glutamine, arginine, or taurine to decrease neonatal morbidities. GOR B 
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Lipids (see supplementary digital content no.6, http://links.lww.com/MPG/C974 ) 

Dietary fats provide about 50% of the energy needs of preterm infants as well as essential 

polyunsaturated fatty acids (PUFAs), lipid soluble vitamins, and complex lipids. Human milk (HM) is 

a suspension of fat globules with a variable fat concentration of about 3.2-4 g/100mL. The core of the 

milk fat globule (MFG) consists of 98-99% triglycerides surrounded by a membrane of phospholipids, 

cholesterol and other highly active bioactive components (49). About 15-20% of FAs in HM are PUFAs 

(50, 51). The balance of the essential and conditionally essential PUFAs to each other is important 

because these FAs compete for desaturases and elongases in the PUFA conversion pathways.  

Arachidonic acid (ARA) and docosahexaenoic acid (DHA) are actively transferred through the placenta 

during the 3rd trimester of pregnancy and brain accumulation is considerable (52, 53). Many studies 

show a decrease in ARA and DHA levels in preterm infants after birth suggesting insufficient 

endogenous synthesis from the essential FAs linoleic acid (LA) and α-linolenic acid (ALA) (54, 55). 

ARA and DHA are thus considered conditionally essential in preterm infants. Reduced concentrations 

of both ARA and DHA are associated with increased risk of retinopathy of prematurity, septicemia and 

severe bronchopulmonary dysplasia (49). Data from meta-analysis and RCTs on the effect of DHA 

supplementation (with or without ARA) on neurodevelopmental and other clinical outcomes show 

inconsistent results but this may reflect variation in study design and methodology (see SDC 6 for 

further detail and references). Estimates for lipid needs based on fetal lipid accretion, losses due to fat 

malabsorption, unavoidable oxidation, and conversion of absorbed to tissue deposited triglyceride are 

3.8-4.8 g/kg/d (18). Aiming for dietary fat to provide 45-55% of the energy intake, a minimum supply 

of 4.8 g/kg/d is required to assure 96 kcal/kg/d of non-protein calories. Mature breast milk fed at 160–

180 mL/kg/day will provide a mean fat intake of up to 7 g/kg/d (46, 56) with an upper interquartile 

range of ~8.1 g/kg/d. These intakes appear safe even in extremely low-birth weight infants (57).  

Adding ARA and DHA to enteral feeds are thought to be a reliable way of ensuring adequate supplies 

of these PUFAs, but both the composition and the mode of administration (enteral or buccal) need to 

be considered. Providing > 50 mg/kg/d of DHA seems sufficient to obtain DHA concentrations like 

fetal blood in utero. Determining appropriate ARA intakes are demanding because ARA requirements 
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are less studied than that of DHA, and the endogenous synthesis of ARA is more efficient. Intakes based 

on the average value observed in human milk of 0.5% of FAs would equal 30 mg/kg/d ARA. 

Considering a range of DHA intake of 30 to 65 mg/kg/d, and an ARA:/DHA ratio ranging from 0.5 to 

2, an ARA intake up to 100 mg/kg/d appears safe. Limited data are available to determine if there is 

any benefit for dietary eicosapentaenoic acid and because of concerns around toxicity. 

Conclusions, Recommendations  

C1: There is not enough new data to support a significant modification of previous recommendations 

for linoleic and linolenic acids nor medium chain triglycerides LOE 2+ 

C2: DHA supplementation has modest and transient effects on neurodevelopment outcomes but may 

help achieve intakes close to intrauterine accretion rate LOE 1+ 

C3: With a DHA intake range of 30 to 65 mg/kg/d and aiming for an ARA/DHA ratio ranging from 0.5 

to 2, 15 to 100 mg/kg/d of ARA appear to be safe LOE 1- 

C4: Limited data are available to define if there is any benefit for including EPA in the diet of preterm 

infants LOE 3 

R1: A total fat intake of 4.8 to 8.1 g/kg/d is recommended although higher intakes may be safe GOR B 

R2: Amounts of medium chain triglycerides exceeding 40 % of total fat are not recommended GOR B 

R3: A Linoleic acid intake of 385 to 1540 mg/kg/d, a minimum linolenic acid intake of 55 mg/kg/d, and 

a linoleic acid to linolenic acid ratio of 5-15:1 (wt/wt) are considered acceptable GOR B 

R4: A DHA intake of 30 to 65 mg/kg/d is recommended assuming sufficient intake of ARA GOR A  

R5: An ARA intake of 30 to 100 mg/kg/d is recommended GOR B 

R6: EPA intake should be < 20 mg/kg/d GPP ACCEPTED
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Carbohydrates (see supplementary digital content no.7, 

http://links.lww.com/MPG/C974 ) 

The carbohydrate concentration of human milk (HM) is quite stable and increases from ~6.2 g/100mL 

to 7.1 g/100mL during the first month of life (47, 58). The predominant digestible carbohydrate is the 

disaccharide lactose (48, 59) but free glucose, galactose and human milk oligosaccharides (HMOs) 

comprise about 15-30% (48). Incomplete digestion of lactose (HM) or lactose/glucose polymers 

(preterm formula) may limit the availability of energy from carbohydrate, however lactose feeding 

increases intestinal lactase activity (60). Undigested lactose and glucose polymers are salvaged by 

colonic bacteria (59, 61). Concerns that carbohydrate malabsorption increases the risk of necrotizing 

enterocolitis (NEC) have been explored in studies, but replacing lactose with more readily digestible 

glucose polymers show inconsistent results in regard to feeding tolerance, weight gain and calcium 

absorption (62-66). 

The low glycogen reserves and limited fat stores put preterm infants at risk of hypoglycaemia (67), but 

they are also at risk of hyperglycemia due to immature glucose regulatory mechanisms including 

persistent hepatic gluconeogenesis, decreased pancreatic beta-cell activation and partial insulin 

resistance (67-69). Hyperglycemia is associated with increased mortality, morbidity, and longer-term 

brain outcomes (69, 70). 

Carbohydrates constitute 45%-50% of non-protein calories in HM and standard preterm formulas. The 

relative contribution of carbohydrate to total non-protein energy might be of importance (71). At equal 

protein and energy intakes, carbohydrate improves nitrogen retention compared with fat (39, 40). 

However, high-energy, high-carbohydrate intakes increase fat deposition (39, 40), and higher postnatal 

carbohydrate intakes and hyperglycemia have been associated with higher blood pressure at 6.5 years 

of age (72). The balance of benefits and risks needs consideration when determining carbohydrate intake 

recommendations. Supplementation of human milk exclusively by digestible carbohydrates (e.g. 

lactose, glucose, or glucose polymers) has not been studied in RCTs (73). Therefore, the optimum 

enteral carbohydrate still is unknown but observational studies suggest that increasing energy together 

with protein by providing either fortified or non-fortified high HM volume regimens are safe and 
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improve in-hospital growth (4, 74, 75) and possibly language scores at 2 years of age (74). Assuming 

energy needs of 115-140 kcal/kg/d, enteral protein intakes of 3.5-4.0 g/kg/d, and a carbohydrate 

composition contributing to 40-50% of non-protein energy intakes, a carbohydrate intake in the range 

of 11-15 g/kg/d seems reasonable.  

Conclusions, Recommendations 

C1: There are no new data from randomized controlled trials (RCTs) on the effects of exclusively 

increasing carbohydrate intakes on short- and long-term outcomes in preterm infants, therefore the 

optimal intake range is uncertain LOE 2 

C2: Observational data suggest that carbohydrate given as fortified human milk at upper 

intake ranges is safe and improves in-hospital weight, length and head circumference growth 

LOE 2++ 

C3: Preterm infants fed formula may need lower carbohydrate intakes than infants fed fortified HM, 

due to higher absorption rates of glucose polymers compared to lactose LOE 2 

C4: The optimal lactose to total carbohydrate ratio in human milk fortifiers or in preterm formulas is 

unknown LOE 3 

R1: In preterm infants, a carbohydrate intake of 11-15 g/kg/d is recommended GOR B  

R2: Higher carbohydrate supplies as part of higher multicomponent supplementation or higher human 

milk intakes may be considered during a short period of time to cover cumulative deficits and 

facilitate catch-up growth if tolerated (euglycemia), but should also be tapered accordingly to avoid 

overnutrition GPP 

Sodium, Chloride and Potassium (see supplementary digital content no.8, 

http://links.lww.com/MPG/C974 ) 

Sodium  

Sodium (Na) is the principal cation in extracellular fluid and concentrations influence intravascular 

and interstitial volumes, and blood pressure. Na also has a role in bone mineralization, nerve 

conduction, nitrogen retention and growth. Fetal accretion rates of Na are estimated at 1.6-2.1 

mmol/kg/d at 27-34 weeks of gestation (76).  Gastrointestinal Na absorption is effective in preterm 
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infants with typical faecal Na excretion rates <10% of intake, but is higher in early postnatal life and 

those born more preterm (77). Preterm infants have limited renal capacity both to conserve Na when 

challenged by Na restriction and excrete Na when challenged by a Na load. Tubular Na loss is 

inversely associated with gestational age (78), and it is increased during critical illness and by certain 

medications (79). Urinary Na losses as high as 7 mmol/kg/d have been reported in preterm infants 

(80). The Na concentration of human milk (HM) declines rapidly over the first few postnatal days 

(81), and is also influenced by expression methods and maternal serum concentration (82, 83).   

Few high quality RCTs of Na supplementation exist, although some show that higher Na intakes of 4-

6 mmol/kg/d versus 3-4 mmol/kg/d increase weight gain. Furthermore, the addition of concentrated 

sodium chloride or sodium phosphate to expressed fortified HM may increase milk osmolality (84).   

Conclusions, Recommendations 

C1: Na requirements show considerable inter- and intra-individual variation, especially in VLBW 

infants. LOE 2 

C2: Breastmilk with added fortifiers may be insufficient to meet Na needs in preterm infants LOE 

2++ 

C3: The enteral administration of Na additives exposes the infant gut to higher osmolality LOE 3 

R1: A Na intake of 3 to 8 mmol/kg/day is recommended. The upper range of Na intake is slightly 

higher than in previous recommendations and should be considered in infants receiving high energy 

and protein intakes or with important sodium loss. GPP 

R2: Na additives should be diluted with milk and divided between different feeds over 24 hours to 

maintain osmolality as low as possible GOR C 

Chloride  

Chloride (Cl) is the most abundant anion in extracellular fluid and along with Na, helps maintain 

osmotic pressure and hydration. Cl is also involved in maintaining ionic neutrality. The difference 

between Na and Cl plasma concentration affects hydrogen and bicarbonate ion concentrations. The 

daily turnover of Cl is high, and renal tubular reabsorption rate is 60-70%. Chloride content in HM is 
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similar at different gestations (85). Low Cl intakes may result in failure to thrive, slower growth and 

delayed neurological development (86, 87).  

In enterally fed preterm infants receiving oral salt supplementation, Cl intake parallels that of Na or 

K, so, where there are high intakes of Na or K there will also be high Cl intakes (88). Cl losses and 

excretion can occur independently from Na.  Medications may also be a source of additional Cl 

intake. Studies in infants receiving parenteral nutrition suggest that Cl intake should be slightly lower 

than the sum of Na and K intakes to avoid severe metabolic acidosis (89).  

Conclusions and Recommendations 

C1: Cl intakes parallel that of Na where oral salt supplementation is used LOE 2++ 

C2: High Cl intakes from additives and human milk fortifiers with low strong ion difference may 

induce metabolic acidosis LOE2++ 

R1: A Cl intake of 3 to 8 mmol/kg/d is recommended. GOR C 

R2: Cl intake from HM fortifiers and preterm formula should be slightly lower than the sum of Na + 

K intakes to avoid metabolic acidosis. HM fortifiers should provide buffers to compensate for high 

renal acid load. GOR B 

Potassium  

Potassium (K) is the most abundant cation in the human body and the major intracellular ion. The K 

concentration gradient across cell membranes is crucial for maintaining contractility and neuronal 

function and is maintained by the tight balance of the influx or efflux of K from intra- to extracellular 

spaces. K is needed for somatic growth and the K pool correlates well with lean body mass. A growth 

rate of 15 g/kg/d results in a net storage of about 1.0-1.5 K mmol/kg/d (77). The total body K content 

depends on the balance of K intake and excretion and is mainly dependent on renal regulation. After 

an enteral feed, 80% of the absorbed K enters the cells due to increased insulin concentrations 

stimulated by the contemporary absorption of glucose and amino acids (90). Renal K excretion is 

increased by diuretics, and several factors increase gastrointestinal K losses including vomiting and 

diarrhea, changes in aldosterone, epinephrine, and prostaglandins (90).     
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Several studies in parenterally fed preterm infants show an increased incidence of hypokalaemia with 

higher protein and energy intakes (91-93). In infants receiving amino acid intakes of 3 g/kg/d, the K 

balance remains positive with K intakes ≥ 2 mmol/kg/d. It seems likely that similar amounts are 

needed when enterally fed but the optimal K intake in infants receiving higher protein intakes 

(<4.5g/kg/d) is not clear. K concentrations in extracellular fluid are tightly regulated, implying that 

intracellular K deficiency may still occur in the presence of a normal plasma K concentration.  

Conclusions, Recommendations 

C1: In enterally fed preterm infants there is a linear association between K needs and protein retention 

LOE 3 

R1: A K intake of 2.3 to 4.6 mmol/kg/d is recommended. The upper range of K intake should be 

considered in growing infants receiving the upper ranges of energy and protein intakes. GOR B 

Mineral intakes Ca, P, Mg (see supplementary digital content no.9, 

http://links.lww.com/MPG/C974 ) 

Bone mineral metabolism in early neonatal life is complex and determining optimal intakes is 

challenging. Ca accretion in the bone accounts for ~ 98% of total Ca-stores, whereas P stored in bone 

only represents ~ 80% of the total P accretion. The remaining P, about 20%, is involved in lean mass 

accretion, incorporated in nucleic acids and cell membranes, or used in the intra-cellular energy 

metabolism. This means that P intakes must be greater than that needed simply for bone mineral 

accretion (94-96). Estimates of the fetal mineral accretion rate and estimates of the the rate of mineral 

absorption by the preterm intestine (18, 95, 97-99) suggest fetal accretion rates of calcium (Ca), 

phosphorus (P) and magnesium (Mg) of approximately 2.5-3.0mmol/kg/d, 1.6-2.1mmol/kg/d, and 0.12-

0.21mmol/kg/d respectively (76, 100, 101). Dietary mineral provision to achieve the estimated retention 

rates may be quite variable, as Ca and P absorption rates range between 30-70% and 70-90%, 

respectively (102, 103). Bioavailability is also dependent on the type and composition of the milk, the 

fatty acid components (e.g., presence of beta-palmitate) and the form of mineral given (102-110). 

Accretion rates in preterm infants are lower than in-utero estimates, resulting in a lower bone mineral 

content (BMC) at term corrected age compared to term-born peers.  
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The low mineral content of HM does not meet the needs of preterm infants, and studies show that 

current breastmilk fortifiers and preterm milk formula result in Ca and P retention rates of 2.3-2.8 and 

2.2-2.6 mmol/kg/d, respectively, close to fetal accretion rates. Insufficient provision of Ca and/or P may 

lead to osteopenia and fractures. Improvements in nutritional care, including more appropriate use of 

breastmilk fortifiers, changes in milk formula composition, and better positioning of infants inside 

incubators, have resulted in a reduction in fractures, albeit osteopenic changes on X-ray are still 

common (111, 112). Unfortunately, there are no useful clinical techniques that directly measure or 

estimate BMC to guide clinical practice. 

Whilst adequate mineral intakes are clearly important, the only RCT with long-term outcomes showed 

no effect of different postnatal calcium and phosphorus intakes on adult BMC (113). Based on an 

intestinal absorption rate of 60% for Ca and 80-90% for P, we estimate that healthy growing preterm 

infants will need approximately 4-4.5 mmol/kg/d of Ca and 3-3.5 mmol/kg/d of P when fed fortified 

HM. However, intakes up to 5 mmol/kg/d of Ca and 3.7 mmol/kg/d of P (or higher) may be needed if 

milk formulas with poor mineral absorption are provided. 

Mg accretion during the last trimester of gestation is around 0.12-0.21mmol/kg/day with around half 

being accreted in the bone, and the remainder in muscle and soft tissue. Mg absorption rates change 

depending on Mg intakes but are typically around 40-50% (102, 114), and in preterm infants serum 

concentrations are higher than older infants with a range of 0.6-1.25mmol/L (115). Studies in preterm 

infants on fortified HM providing 0.2-0.3 mmol/kg/d showed absorption rates of around 45-50 % 

leading to a Mg retention of 0.1mmol/kg/d. In preterm infants fed formula, Mg intakes are 

approximately 0.4-0.5 mmol/kg*/d which appears to be adequate. No RCTs determining effects on bone 

accretion have been conducted. 

Conclusions, Recommendations 

C1: The lack of a strong evidence base for determining mineral intakes that will optimise functional 

bone or other outcomes means that recommended reference ranges are wide. LOE 2+ 

C2: Inadequate mineral intakes postnatally result in osteopenia which increases the risks for bone 

fractures in preterm infants. However, there is no consensus regarding how best to assess BMC in 

clinical practice and there are few well-designed RCTs to determine optimal mineral intakes. LOE 3 
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C3: Targeting a Ca retention of 2.2-2.8mmol (90-110mg)/kg/d is appropriate to minimise mineral bone 

deficiency and the risk of fractures in preterm infants. The target for P retention is 2.2-2.6 mmol (70-

80 mg)/kg/d and includes both the functional P requirements as well as the P requirement for bone- and 

soft tissue accretion. LOE 3 

C4: Adequate phosphorus intakes are essential to accrete lean tissue (each gram of protein requires 

approximately 0.35mmol of phosphorus). The provision of PN with low phosphate and unfortified HM 

increase the risk of both early and late hypophosphatemia. LOE 2+ 

R1: It is recommended to fortify HM early with phosphate followed by early introduction of multi-

component breastmilk fortifiers to optimise bone mineral outcomes  GOR C 

R2: A Ca intake of 3.0-5.0 mmol (120-200 mg)/kg/d and a P intake of 2.2-3.7 mmol (70-115 mg P)/kg/d 

of P are recommended. GOR C 

R3: The recommended molar calcium to phosphate ratio to ensure adequate Ca retention is ≤1.4 (≤1.8 

in mass) GOR C 

R4: Preterm infants fed artificial milk formula may require higher mineral intakes than those fed human 

milk. GPP 

R5: Regular monitoring of P and Ca status is recommended. We do not recommend the routine use of 

bone imaging or other direct assessments of BMC in clinical practice.  GOR C 

R6: In preterm infants fed fortified human milk or preterm milk formula, a Mg intake of 0.4-0.5 mmol 

(9 to 12.5 mg)/kg/d is recommended. GOR C 

Trace elements (see supplementary digital content no.10, http://links.lww.com/MPG/C974 ) 

Trace elements are essential for many functions in different organ systems, as well as for normal 

growth and development.  Whilst adequate dietary intakes are important for preterm infants to prevent 

deficiencies, important adverse effects of excessive intakes exist.  

Iron 

Systematic reviews clearly show that iron supplements effectively prevent iron deficiency anemia in 

preterm infants but there is no benefit in exceeding standard doses of iron (i.e. 2-3 mg/kg/day) in 

VLBW infants (116). Overall, there is a lack of RCTs with long term neuro-developmental outcomes, 
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but RCTs in late preterm infants have shown improved developmental outcomes in iron supplemented 

infants. Furthermore, starting at ~2-3 weeks vs later ~4-8 weeks of age is associated with a lower need 

for blood transfusions in VLBW infants (117). Delayed umbilical cord clamping increases neonatal 

iron stores and is associated with a lower mortality, lower risk of intraventricular haemorrhage and 

lower need for red cell transfusions in preterm infants (118). Erythropoietin may reduce the need for 

red blood cell transfusions but requires much higher iron intakes.  

Ferritin is a useful biomarker of iron status, but reference intervals differ from older infants and 

children. Ferritin concentrations <35-40 µg/L indicate iron deficiency while concentrations >300-350 

µg/L indicate iron overload (119-121). Ferritin is not useful as a biomarker of iron status in patients 

with ongoing inflammation or liver disease. 

Recommendations: 

● A daily iron intake of 2-3 mg/kg/day starting at 2 weeks of age is recommended for very low birth 

weight infants. LOE 1+, GOR A 

● Infants who receive erythropoietin treatment need a higher dose (up to 6 mg/kg/day). LOE 1-, 

GOR B 

● Since individual iron status in VLBW infants is highly variable, depending on the number of 

received blood transfusions and blood losses from phlebotomy, it is recommended to follow these 

infants with repeated measurements of serum ferritin. LOE 4, GOR GPP 

● If ferritin is <35-70 µg/L, the iron dose may be increased up to 3-4 (or maximum 6) mg/kg/day 

for a limited period. LOE 4, GOR GPP 

● Prolonged dietary iron intakes of >3 mg/kg/day should be avoided in most cases because of 

possible adverse effects. LOE 1-, GOR B 

● If ferritin is >300 µg/L, which in the absence of ongoing inflammation and liver disease usually is 

the result of multiple blood transfusions, iron supplementation and fortification should be 

discontinued until serum ferritin falls below this level. LOE 4, GOR GPP 

● Iron supplements or intake of iron-fortified formula in the recommended doses should be 

continued until 6-12 months of corrected age. LOE 4, GPP 
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● Like all infants, preterm infants should receive iron-rich complementary foods from 6 months of 

age. LOE 1+, GOR A 

● Delayed umbilical cord clamping, whenever feasible, is recommended for all preterm infants. 

LOE 1++, GOR A 

Zinc  

Zinc is an essential trace element involved in growth and tissue differentiation. Zinc deficiency in 

preterm infants is associated with stunted growth, increased risk for infections, skin rash, and possibly 

poor neurodevelopment (122). In contrast to iron and copper, zinc does not have a pro-oxidant effect 

and adverse effects of excess zinc intakes are rarely reported, except for a negative effect on copper 

absorption with high zinc intakes. 

The factorial method combined with data from metabolic balance studies suggest enteral zinc intakes 

of at least 2.0-2.25 mg/kg/d are required (123) and up to 3 mg/kg/d in extremely preterm infants due 

to faster growth rates (88, 124). A small number of studies suggest an intake of at least 1.4-2 mg/kg/d 

is needed to achieve optimal growth in preterm infants (125, 126) but higher enteral intakes appear 

safe and may be beneficial. Two recent meta-analyses suggests that zinc supplementation improves 

weight gain and linear growth in preterm infants and may decrease mortality (127, 128). Very preterm 

infants can develop symptomatic zinc deficiency with acrodermatitis enterohepatica and/or poor 

growth, especially those infants who have an enterostomy after NEC surgery (129).  

Recommendations 

● We recommend an enteral zinc intake of 2-3mg/kg/d, based on the most recent randomized 

controlled trial as well as on factorial calculations. LOE 2, GOR C 

● Measurement of serum zinc should be considered in preterm infants with poor growth and low 

alkaline phosphatase level, especially if they have excessive GI fluid losses. LOE 4, GOR GPP 

Other trace elements 

Recommendations for copper, selenium, manganese, iodine, chromium, and molybdenum are covered 

only very briefly here, while the full background is reported in the supplementary material. The 

recommended copper intake has been increased to 120-230 µg/kg/d to compensate for the higher 
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recommended zinc intake (see above), since these two ions compete for intestinal absorption. We 

recommend an enteral selenium intake of 7-10 µg/kg/d, which has been shown to result in Se status 

like term infants and possibly a reduced risk of sepsis. Based on the average HM manganese content 

and the lower range of manganese in current preterm formulas, an enteral manganese intake of 1-15 

µg/kg/d can be recommended. Despite a recent RCT, there is not enough conclusive evidence to 

change the previous recommendation, so an iodine intake of 11-55 µg/kg/d is recommended. The 

recommendations for chromium (0.03-2.25 µg/kg/d) and molybdenum (0.3-5 µg/kg/d) are unchanged.  
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Water soluble vitamins (see supplementary digital content no.11, 

http://links.lww.com/MPG/C974 ) 

Water soluble vitamins are essential for whole body function and homeostasis. There is a major lack 

of studies to determine requirements for preterm infants. We used European Food Safety Authority 

(EFSA) recommendations for infants <6 months to calculate weight-based estimates, human 

breastmilk concentrations to estimate intakes in healthy infants, clinical studies where they exist and 

considered the amount provided by preterm infant formulas when fed at a minimum energy intake of 

115kcal/kg/d, acknowledging that this last approach may significantly overestimate needs and noting 

that excess intakes are unlikely to be beneficial.  Wide ranges in intake recommendations for preterm 

infants do not represent the distribution of intakes in a population, and in the absence of robust 

evidence dietary recommendations may be inflated to ensure adequacy well in excess.  

Our approach is described in the supplementary materials. We acknowledge that estimates solely 

derived from EFSA recommendations or the concentration in breastmilk may underestimate the 

increased requirements of the rapidly growing preterm infant. However, it is likely that total daily 

recommendations from EFSA for term infants will be adequate for preterm infants as the weight 

difference results in an approximate 3-5 fold higher intake per kg body weight. The recommendations, 

which are largely similar (but not identical) to the previous ESPGHAN recommendations, are only 

briefly reported here and we refer to the full text in the supplementary documents. 

Thiamine: Considering the available evidence we propose an intake of 140-290 μg/kg/d based on the 

content of infant formula milk LOE 3, GPP. The B1 content in breastmilk or the EFSA daily 

recommendations for B1 (42 μg/100 kcal or 46 μg/kg) might also be adequate (130). 

Pantothenic acid: Considering the available evidence we propose an intake of 0.6 to 2.2 mg/kg based 

on the content of infant formula milk LOE 3, GPP. 

Biotin: We recommend using the lowest concentration of biotin that would be provided using preterm 

formula and the upper level in the previous recommendations by ESPGHAN (18). We propose an intake 

of 3.5 to 15 μg/kg based on the content of infant formula milk LOE 3, GPP 
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Niacin: Considering the available evidence we propose an intake of 1100 to 5700 μg/kg based on the 

content of infant formula milk LOE 3, GPP 

Ascorbic acid (vitamin C): Considering the available evidence we propose an intake of 17 to 43 mg/kg 

based on the content of infant formula milk LOE 3, GPP 

Riboflavin (B2): We recommend an intake of riboflavin of 200 to 430 μg/kg/d [LOE 3, GOR GPP]. 

The daily recommendations made by the EFSA Panel may also be adequate considering the lack of 

evidence of differences in requirements between preterm and full-term infants. 

Pyridoxine: We suggest a recommended intake in keeping with the concentration range that would be 

provided by commercially available preterm milk formula (70-290 μg/kg/d) [LOE 3, GOR GPP]. This 

is close to the previous guidelines of ESPGHAN (18), the EFSA daily recommendations and the 

available evidence discussed above. 

Folate: Considering the range of folic acid content in preterm infant formula (20 to 45 μg/100 kcal, or 

23 to 52 μg/kg) we propose an intake of 23-100 μg/kg/d LOE 3, GPP. Based on the evidence available, 

a folate intake at the maximum of the recommended range may improve patients’ outcomes.       

Cobalamin (B12): We propose dietary recommendations of 0.10 to 0.60 μg/kg based on the cobalamin 

content in preterm infant formulas LOE 3, GPP. An intake >0.6 μg might be associated with 

excessively elevated B12 levels in blood.   

Fat soluble vitamins ADEK (see supplementary digital content no.12, 

http://links.lww.com/MPG/C974 ) 

Vitamin A 

Vitamin A is essential for growth and tissue differentiation (131, 132), and especially important in lung 

maturation (133). Preterm infants often have lower plasma concentrations of both retinol and retinol 

binding protein (RBP) at birth compared with term infants reflecting low hepatic stores (134). A plasma 

retinol concentration of ≥ 200 ng/mL is generally considered adequate (135), but due to the complexity 

of vitamin A metabolism and organ immaturity in preterm infants, vitamin A supplementation may still 

not result in adequate concentrations in blood. The beneficial role of high dose intramuscular vitamin 

A for prevention of BPD in preterm infants has been demonstrated (136). However, due to discomfort, 
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this form of supplementation is not common practice. Studies of higher enteral doses (5000 IU/day) 

produced inconsistent effects on BPD (137-140).  

Conclusions, Recommendations 

C1: There are insufficient data to change the previous recommendation of daily vitamin A intake in 

preterm infants (18), but infants with hepatic impairment may need higher intakes, and those with renal 

impairment may require lower doses LOE 2++ 

R1: Based on best current available data, we recommend a daily total intake of vitamin A of 1.333-

3.300 IU/kg body weight (400-1000µg retinol ester/kg/d) GOR B 

Vitamin D 

Vitamin D plays a critical role in multiple cellular processes especially bone metabolism and the 

immune system (141). Pathways of vitamin D absorption and metabolism are fully operative in babies 

<28 weeks GA (142-144).  Mineral bone deficiency in preterm infants is common and is primarily 

caused by suboptimal intakes of calcium and phosphate, but this can be compounded by Vitamin D 

deficiency (145). Even though there is no consensus regarding the definition of vitamin D deficiency in 

infants, the ESPGHAN Committee on Nutrition has previously recommended the pragmatic use of a 

serum 25-hydroxy vitamin D concentration >50 nmol/L to indicate sufficiency and a serum 

concentration <25 nmol/L to indicate severe deficiency, whilst noting that excessive vitamin D intakes 

resulting in concentrations >120nmol/L should also be avoided  (146, 147). 

Several studies have assessed the effect of vitamin D3 intake on circulating of 25(OH)D concentrations, 

but few studies assess the impact on bone mineral density (BMD) after the immediate neonatal period 

and results are inconsistent (145, 148-150). Vitamin D intakes of 400-670 IU/kg/day in infants weighing 

1500-2000g and 500-1000 IU/kg/day for those weighing 100-1500g reduces the risk of deficiency (148-

150), but studies suggest that lower doses (200-300 IU/kg/day) may also be sufficient (148, 151). 

Conversely, another study suggested a daily vitamin D supplementation of 800 IU/d in extremely 

premature infants with a gestational age < 28 weeks (152). Based on this, we recommend a daily vitamin 

D intake of 400-700 IU/kg/d (10-17.5µg/kg/d) for stable preterm infants. This corresponds to 300-525 

IU/kg/d at 750 g body weight, 400-700 IU/kg/d at 1000 g body weight, and 600-1000 IU/kg/d at 1500 

g body weight. The maximum recommended routine intake is 1000 IU/d, but preterm infants who are 

ACCEPTED

Copyright © ESPGHAN and NASPGHAN. All rights reserved

nb12425
Highlight

nb12425
Highlight

nb12425
Highlight

nb12425
Highlight

nb12425
Highlight

nb12425
Highlight

nb12425
Highlight

nb12425
Highlight



33 
 

vitamin D deficient due to maternal vitamin D deficiency or cholestasis may temporarily need higher 

doses. Adequate vitamin D supplementation could be monitored by measuring serum 25(OH)D 

at 3-4 weeks of life and then every month until discharge to adapt vitamin D supplementation 

to each individual's needs. 

Conclusions, Recommendations 

C1: Ensuring adequate vitamin D intakes in preterm infants is essential for bone health and may possibly 

have positive effects on immune function, even though this is not conclusively shown. LOE 2+ 

C2: There are few adequately powered controlled trials on which to base firm recommendations in 

preterm infants, and even fewer trials provide clinically relevant outcomes beyond vitamin D 

concentrations, e.g., markers of bone health. LOE 4 

R1: Based on currently available data, we recommend a daily vitamin D intake of 400 to 700 IU/kg/d 

(10 µg-17.5 µg/kg/d) during the first months of life with a maximum dose of 1000 IU/day (25 

µg/d) LOE 2++, GOR B 

Vitamin E 

Vitamin E comprises a group of eight biologically active tocopherols which act as antioxidants to 

scavenge free radicals, potentially limiting lipid peroxidation which can lead to bronchopulmonary 

dysplasia (BPD), retinopathy of prematurity (ROP), and hemolytic anemia (153, 154).  

Low concentrations of vitamin E were found at birth and at discharge in preterm infants (155) but serum 

concentrations may not reflect tissue concentrations (156).  

Clinical studies of supplementation are inconsistent, and although there may be benefits (157, 158) 

there are some data suggesting high intakes may increase risk of sepsis and NEC (159).  

Studies of routine enteral vitamin E supplementation in preterm infants, suggest it may be prudent to 

maintain plasma vitamin E concentrations of 10 - 35 mg/L, and a ratio of serum-α-tocopherol of at least 

1 mg to 1 g total lipids, which would suggest a minimum dose of 3.8 mg/kg/d. However, no clinical 

benefits have been seen, and the recommended daily intake of vitamin E in preterm infants is 2.2-11 

mg/kg/d (18, 159, 160). Infants with prolonged cholestasis may require higher intakes. 

Conclusions, Recommendation 
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R1: Based on the current available data, we recommend a daily dose for vitamin E supplementation in 

preterm infants of 2.2-11 mg/kg/d LOE 2++, GOR B 

Vitamin K 

Vitamin K is a group of lipophilic, hydrophobic vitamins necessary for the synthesis of coagulation 

factors (factors II (prothrombin), VII, IX, and X, and the anticoagulation proteins C and S in the liver. 

Maternal transfer of vitamin K across the placenta is very low with cord blood concentrations of vitamin 

K often below the detection limit of 0.02 ng/mL in healthy newborns (161) and breastmilk also has very 

low levels of vitamin K (162, 163). Late onset vitamin K deficiency bleeding is primarily seen in 

exclusively breast-fed infants or in those with cholestatic disease (164). 

Whilst preterm infants are at high-risk of Vitamin-K deficiency bleeding most receive prophylactic 

vitamin K at birth, and additional intakes from parenteral nutrition, infant formula, and breast milk 

fortifiers. Vitamin K can be administered intramuscularly, intravenously, and orally with different 

recommended dosing regimen (165). Thus, serum concentrations in preterm infants are usually higher 

than those found in term formula-fed infants (166). There are no RCTs in preterm infants, and 

nutritional recommendations vary from 4.4-28 µg/kg/d, to up to 100 μg/kg/day (18, 163, 167) although 

higher intakes may be needed where there is prolonged cholestasis. 

Conclusions, Recommendation 

R1: Based on the current based available data, we recommend a daily dose for vitamin K of 4.4-28 

µg/kg LOE 2++, GOR B  

Feeding mode: minimal enteral feeds, feed advancement, gastric residuals and timeline of 

parenteral and enteral nutrition (see supplementary digital content no.13, 

http://links.lww.com/MPG/C974 )                                                                                                                  

Minimal enteral feedings and enteral fasting during the first days of life 

Minimal enteral feeding (MEF) is synonymous with gut priming, minimal enteral nutrition, trophic 

feeding or hypocaloric feeding and defined as small volumes of milk (typically 12-24 ml/kg/day) 

without advancement in feed volumes during the first 3-7 days (168, 169). Numerous studies and 

systematic reviews exist comparing MEF with no feeds, or earlier advancement, but many studies 
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were conducted more than 20 years ago. Overall there are no consistent effects on NEC or all-cause 

mortality (170, 171) and this is supported by more recent studies (172-174).  

Conclusions, Recommendations 

C1: Minimal enteral feedings are defined as nutritional insignificant small volumes of milk (typically 

12-24 ml/kg/day) without advancing the feed volumes for a period of 3-7 days. LOE 1+  

C2: There is no clear beneficial effect of enteral fasting or MEF of any duration compared to 

advancing feeds immediately after birth. LOE 1+ 

R1: Start small volume enteral feeds as soon as possible after birth in most preterm infants and 

advance feeds as clinically tolerated. GOR B 

Advancement of enteral feeds  

Systematic review of 10 RCTs including a total of 3753 infants show no impact of speed of 

advancement (175) on NEC or sepsis supported by findings of the large Speed of Increasing milk 

Feeds Trial (SIFT) (176) which compared daily increments of 18 mL/kg/day to 30 mL/kg/day. The 

median enrolment age of 4 days in the SIFT trial may not adequately inform the relative safety of 

these increments at an earlier age. In addition, the actual daily increment was slower than targeted in 

both groups and other factors such as the approach and definition of feeding tolerance or gastric 

residuals might have influenced practice. 

Conclusions, Recommendations 

C1: After 4 days of life, faster feeding progression (30mL/kg/day) of enteral feed volumes does not 

significantly increase the incidence of NEC or all-cause mortality compared to slower (15-20 

mL/kg/day) feeding advancement LOE 1+ 

C2: Meta-analysis showed that faster increment of enteral feed volumes positively reduces the time to 

full enteral feeding and the length of hospital stay as well as possibly the incidence of invasive 

infections LOE 1+ 

R1: In stable preterm infants where the clinician considers that feed volume can be increased, a 

routine daily increment of 18-30mL/kg/day is recommended, especially in breastmilk-fed infants. 

GOR A 
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Gastric residuals  

Gastric residuals (GR) are commonly used to define feeding tolerance although there are few high-

quality data and no adequately powered RCTs to determine the relationship with NEC. Gastric 

emptying is influenced by positioning of the infant and the type of enteral feed, with breastmilk 

emptied almost twice as fast as formula (177, 178) although this may differ following pasteurization 

(179) or fortification (180). There is no consistent, agreed definition of feeding intolerance, clinical 

practice varies widely and RCTs have used different volume definitions. Evidence from relatively 

small studies suggest that routine monitoring of GR increases the risk of feed interruption episodes, 

the time taken to reach full enteral feeds and to regain birth weight, and PN days, but does not have an 

impact on NEC incidence (181, 182). There is no consensus on whether to re-feed or discard the 

aspirated GR. 

Conclusions, Recommendations 

C1: Positioning of the infant has an impact on gastric emptying with the prone position for the first 

half hour post feeding being quickest. LOE 2+ 

C2: The GR alone is neither a sensitive nor a specific indicator for bowel injury of the premature gut 

LOE 2+ 

C3: Routine monitoring of GR increases the time taken to reach full enteral feeds and to regain birth 

weight and increases the number of PN days but does not have an impact on NEC incidence. LOE 2+ 

C4: There is no consensus on whether to re-feed or discard the gastric aspirate LOE 3 

R1: Routine monitoring of GR in the clinically stable infant is not recommended GOR B 

R2: Assessment of GR should be performed only when other clinical signs associated with feeding 

intolerance or NEC are present such as extreme abdominal distension, tenderness, emesis, bloody 

stools, apnea, temperature instability GOR B 

Timeline of parenteral and enteral nutrition  

Most preterm infants receive parenteral nutrition (PN), enteral nutrition (EN), and a transitional period 

in between influenced by local feeding practices, feeding intolerance and metabolic intolerance (183-

185). The transition phase is a critical time period for poor growth (184) although early progressive 
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PN and EN strategies may lead to reductions in the cumulative energy and protein deficits that occur 

during the first weeks of life (186, 187). Standardized feeding guidelines and protocols, designed to 

maintain targeted intake throughout the transition phase (188, 189) can help to achieve nutritional 

goals (190). Data from multiple observational studies suggest that the use of standardized feeding 

protocols allow preterm infants to achieve full enteral feeds faster, shorten the time on PN and 

hospital stay, decrease the rates of NEC, and improve growth and neurodevelopment (5, 191-198). A 

key challenge during the transition phase is to determine optimal intakes when both parenteral and 

enteral nutrition is provided. The use of computerised software able to adapt to changing reference 

values may be helpful.  

C1: Early progressive parenteral and enteral nutrition strategies may reduce cumulative energy and 

protein deficits LOE 2+ 

C2: The transition phase between parenteral and exclusive enteral nutrition is a critical time period for 

cumulative nutrient deficits and for poor growth LOE 2+ 

R1: To avoid nutrient deficits we recommend establishing a standardized feeding protocol in every 

NICU that defines the following parameters: duration of minimal enteral feedings, daily advancement 

of milk feeds, definition and management of gastric residuals, definition, and approach to feeding 

intolerance, breast milk fortification strategy and the definition of full enteral feedings. GOR B 

    

 Feeding Mode: gastric tube and bolus or continuous feeding (see supplementary digital content 

no.14, http://links.lww.com/MPG/C974 ) 

Nasogastric versus orogastric feeding tubes 

Orogastric (OG) and nasogastric (NG) feeding tubes are both used. NG tubes may increase nasal 

airway resistance especially in the smallest infants (199) which may accelerate work of breathing and 

cause pharyngeal airway collapse (200, 201); although systematic reviews show no consistent effects 

on feed tolerance, incidence or frequency of apneas, desaturation episodes or bradycardia (202). OG 

tubes may be more prone to vagal stimulation which may provoke bradycardia (203, 204) due to tube 
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movements in the hypopharynx. Adverse effects of both NG and OG tube placement have been 

described, including tube misplacement (205, 206), nasal damage (207) and oesophageal perforation.  

Bolus versus continuous feeding 

Bolus feeds promote cyclical release of gastrointestinal tract hormones to stimulate gut maturation 

and motility (208) but marked variations in practice exist and many use continuous feeds (183). Low-

quality evidence suggests feeding 3-hourly is comparable to 2-hourly feeding although extremely 

low-birth-weight infants may reach full enteral feeds earlier when fed 2-hourly compared with 3-

hourly (209). Bolus feeding increases splanchnic perfusion more than continuous feeding (210). 

Energy expenditure may increase upon bolus feeding as compared to continuous feeding 

(211). Systematic reviews show longer time to reach full enteral feeding using continuous rather than 

intermittent feeding infants (212) and fat loss may also be greater (213, 214) although there were no 

significant effects on growth (212). Data on apnea are inconsistent (215-219).  

When to start oral (breast)feeding and stop tube feeding 

Infant oral feeding requires coordination of sucking, swallowing, breathing and esophageal transport, 

but factors such as milk availability, NICU environment, and caregiver feeding approach are also 

important (220). Establishing oral feeding may be more challenging in high-risk infants e.g. those 

with BPD (221) where micro-aspirations may compromise respiratory capacity further.  Introducing 

oral feeds to infants on CPAP seems clinically safe based on two small studies and may decrease time 

to full oral feeds (222, 223), and studies also suggest feeding infants receiving high flow nasal 

cannula is possible (224) although swallowing dysfunction and risk of aspiration is important 

(225). There is no consistent evidence that early introduction and advancement of oral feeds based on 

the infant’s individualized cues, state, and behaviour, rather than a predetermined feeding schedule, 

affects important outcomes for preterm infants or their families. Low quality evidence suggests 

preterm infants fed in response to feeding and satiation cues may achieve full oral feeding earlier 

(226). Meta-analyses provided evidence of low to moderate quality indicating that avoiding bottles 

increases breast feeding on discharge home. 

ACCEPTED

Copyright © ESPGHAN and NASPGHAN. All rights reserved

nb12425
Highlight

nb12425
Highlight

nb12425
Highlight

nb12425
Highlight

nb12425
Highlight

nb12425
Highlight

nb12425
Highlight

nb12425
Highlight

nb12425
Highlight



39 
 

Meta-analysis suggests that non-nutritive sucking reduces time to full oral feeding (227), and 

sensorimotor interventions may improve the sucking process (228, 229). Nipple shields may affect 

breastfeeding success, but reviews are contradictory (230, 231) and most do not advocate routine use 

(232).  

Conclusions, Recommendations 

C1: No preferential method to use either nasogastric or orogastric feeding tubes for preterm neonates 

can be determined.  LOE 2 

C2: Bolus feeding (2-3 hourly) might be slightly more preferential than continuous feeding in preterm 

infants, but more well-designed studies are needed for definitive advice. LOE 2+ 

C3: Establishment of non-nutritive sucking prior to the introduction of oral feeding may reduce time 

to reach full oral feeding and length of hospital stay. LOE 3 

R1: Introducing oral feeding should be guided by the competence and stability of the preterm infant 

and may be started from 32 weeks postmenstrual age. GOR GPP  

Growth (see supplementary digital content no.15, http://links.lww.com/MPG/C974 ) 

Growth is evaluated by measuring gain in weight, length, and head circumference (HC) but also using 

measures of body composition. Plotting on a growth chart enables clinicians to compare the growth 

trajectory of each infant to a reference group throughout infancy and childhood and is essential. 

Growth must be considered in the context of improving short- and long-term functional outcomes 

rather than simply promoting an increase in anthropometric values.  

Growth standards for preterm infants are challenging to develop and many growth references are 

simply based on cross-sectional birth weight data. Using postnatal growth data is however challenging 

because many sick infants show altered growth and there are uncertainties of how best to define 

‘healthy’ preterm infants that might act as a standard. Growth velocity based on foetal ultrasound 

estimations can also be challenging, but foetal estimates can guide clinician’s evaluating growth in a 

stable preterm infant. Using e.g., WHO in-utero data, an average foetal weight gain of 20-23 g/kg/d 

during 23-25 weeks of gestation, decreasing to 17-20 g/kg/d during weeks 26-29, 13-17 g/kg/d during 

weeks 30-34 and 10-13 g/kg/d during weeks 35-37 can be guiding. 
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Growth faltering (GF) describes an infant whose growth slows and does not grow parallel to a centile 

during the period of established growth. GF is more common in sick infants and associations with 

poor neurodevelopmental outcomes may be confounded (233). Catch-up growth refers to accelerated 

rates of growth following a period of GF. However, there are concerns that rapid catch-up growth 

may increase the risk of cardiovascular and metabolic disease in later life especially when it is due to 

catch-up in weight without contemporaneous linear or head growth (234). There are no data that allow 

clinicians to determine the optimal degree or duration of catch-up growth in an individual infant. 

During the first 3-4 days after birth, in AGA infants, a weight loss is expected (7-10%), mainly due to 

a one-time irreversible contraction of extracellular water space (235, 236). Studies show small for 

gestational age (SGA) infants often lose less (4-7%) (237, 238). A variety of approaches have been 

suggested to determine the optimal growth trajectory or target percentile for preterm born infants, for 

instance the pragmatic aim of not losing more than 1 SDS in weight and HC from birth to discharge 

(239). However, calculating changes in SDS from birth to discharge is confounded by skewed 

reference data (240), and even more so for the most immature infants growing on lower centiles. It is 

not clear whether infants should regain their actual centile at birth, or whether a target centile should 

be based on weight at 1-3 weeks of age. Growth expectations of each infant have to be individualized 

since infant growth vary depending on genetic potential, intra uterine environment (e.g. pre-eclampsia 

or poorly controlled diabetes) and morbidity in the NICU. 

One concept is to avoid a large weight loss after birth, stabilise growth, avoid GF, approximately 

grow along a target centile and adjust nutrient intakes gradually so that the preterm and term growth 

trajectories merge at around 44 weeks (236). Growth patterns in preterm SGA infants may differ 

(241), and the optimal time frame and/or speed of catch-up growth are not known. 

Conclusions, Recommendations 

C1: Based on current evidence, the optimal growth velocity that optimises outcomes in preterm 

infants remains unclear. LOE 2+ 

C2: According to WHO in-utero growth fetal weight gain decreases from slightly above 20 g/kg/d at 

23-25 weeks of gestation to about 10 g/kg/d at term age LOE2++ 
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R1: Regular monitoring of weight, length and HC growth is strongly recommended. Ideally, weight 

should be measured at least once or twice daily during the first 1-2 weeks, followed by measurements 

2-3 times weekly in the stable growing phase. Length and HC should be measured once weekly unless 

clinical conditions (e.g., hydrocephalus) indicate more frequent monitoring GPP 

R2: After a typical acceptable initial weight loss of 7-10%, reaching a nadir at day 3-4, nutritional 

strategies should aim to regain birth weight by 7-10 days of age, followed by growth along a target 

centile and a gradual transition to the corresponding birth percentile on the WHO postnatal growth 

chart within the first weeks or months post term GPP 

R3: Nutritional management and growth assessment for infants born IUGR and/or SGA should be the 

same as those born AGA, although initial weight loss is often less and acceptable up to 4-7% of birth 

weight. GOR B 

R4: Postnatal growth trajectories (weight, length and head circumference) of each infant must be 

followed and evaluated to ensure nutrition is adequate; ideally using a growth chart based on a large 

robust dataset GPP 

R5: In infants experiencing postnatal growth faltering, some catch-up growth should be allowed but 

rapid catch-up growth should be avoided. If catch-up growth is perceived as too rapid, ensure that 

nutrients are within recommended intake ranges and not excessive GPP 

R6: NICUs should adopt a standardised approach to the management of postnatal growth faltering. If 

growth faltering is recognized, ensure that nutrition is within recommended intake ranges.  

Careful consideration must be used in balancing the well-documented neurocognitive risks of nutrient 

deficiencies and slow growth in early life, against the theoretical risks from rapid catch-up growth and 

adverse metabolic programming in later life GPP  

Breast milk (Buccal colostrum, donor human milk, and pasteurisation of mother’s own milk 

to reduce Cytomegalovirus transmission) (see supplementary digital content no.16, 

http://links.lww.com/MPG/C974 ) 

Administration of buccal colostrum to preterm infants appears safe and theoretically attractive from 

both an emotional as well as immunological point of view, but no clear clinical benefits have 
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consistently been proven in high-resource settings. There is therefore no current data to recommend 

routine administration of buccal colostrum to reduce morbidity or mortality, although there may be 

wider behavioural effects and other benefits (242, 243). 

Fresh mother’s own milk (MOM) contains higher amounts of macronutrients, and immunoactive and 

trophic factors than pasteurised MOM or donor human milk (DHM). Nevertheless, fortified 

pasteurised DHM instead of preterm formula may reduce NEC rates in preterm infants, whereas other 

neonatal morbidity and mortality rates are unaltered (244, 245). We strongly recommend MOM as the 

first choice of feeding in both preterm as well as term infants. In case of insufficient MOM 

availability, fortified DHM is conditionally recommended over preterm formula in preterm infants 

born <32 weeks’ gestation or with a birth weight <1500 g. When providing DHM, health care 

providers must continue to increase awareness of the benefits of MOM over both DHM and preterm 

formula and recognise the variable nutrient density of DHM. 

The vast majority of Cytomegalovirus (CMV) seropositive women undergo CMV reactivation during 

lactation and excrete CMV in their breast milk (246, 247). This leads to (sub)-clinical CMV 

transmission in approximately 15-20% of very preterm infants, although rates may be higher in 

extremely preterm infants (248, 249). Symptomatic postnatal CMV infection, presenting as 

thrombocytopenia, cholestasis, or sepsis-like illness occurs in less than 5 to 10% of infected infants 

(248, 249), whereas associations with BPD, NEC and adverse neurological sequelae are less clear 

(250-252). Whilst pasteurisation will effectively eliminate CMV from breast milk, it also reduces or 

inactivates important bioactive factors. There is insufficient evidence to determine whether potential 

sequelae of postnatal CMV transmission are more harmful than potential adverse effects arising from 

providing pasteurised MOM instead of fresh MOM (253). Thus, while we acknowledge the potential 

adverse consequences of postnatally acquired CMV, especially in the most immature infants, we do 

not recommend routinely pasteurising MOM from CMV-positive women as this may reduce the 

beneficial effects of fresh MOM. 

Conclusions, Recommendations 
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C1: While the administration of buccal colostrum to premature infants appears safe and theoretically 

attractive from both an emotional as well as immunological point of view, no clear clinical benefits 

for the infant have consistently been proven in high-resource settings LOE 1- 

C2: Fresh MOM contains higher amounts of macronutrients, and immunoactive and trophic factors 

than Holder-pasteurised DHM LOE 1++ 

C3: Fortified pasteurised DHM instead of preterm formula milk reduces NEC rates in preterm infants, 

whereas other neonatal morbidity and mortality rates are similar LOE 1+ 

C4: Most CMV-seropositive women undergo CMV reactivation in breast tissue during lactation and 

excrete CMV in their breast milk, which may cause (sub)-clinical CMV transmission in 

approximately 15-20% of very preterm infants, although rates may be higher in extremely preterm 

infants LOE 1+ 

C5: Symptomatic postnatal CMV infection, presenting as thrombocytopenia, cholestasis, or sepsis-

like illness occurs in a minority of infected infants although associations with BPD, NEC, and adverse 

long-term neurological sequelae are less clear LOE 1- 

C6: Whilst Holder-pasteurisation will effectively eliminate CMV from breast milk, it also reduces or 

destroys many beneficial and important bioactive factors LOE 1++ 

C7: There is insufficient data to determine whether the potential sequelae of postnatal CMV 

transmission are more harmful than potential adverse effects arising from providing pasteurised 

instead of fresh MOM LOE 2+ 

R1: No recommendation can be made either for or against the use of buccal colostrum in 

preterm infants in order to reduce neonatal morbidities or mortality so parent preferences 

must be considered.  

R2: We strongly recommend MOM as the first choice of feeding in both preterm as well as term 

infants GOR A 

R3: In case of insufficient MOM availability, fortified DHM is conditionally recommended over 

preterm formula milk in preterm infants born <32 weeks’ gestation or with a birth weight <1500 g 

GOR B 
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R4: When providing DHM, health care providers must continue to increase awareness of the benefits 

of MOM over both DHM and preterm formula. Health care providers must support and facilitate 

mothers in order to promote higher rates and volumes of MOM provision (e.g. through 

lactation consultants) GOR A 

R5: While we acknowledge the potential adverse consequences of postnatally acquired CMV, 

especially in the most immature infants, there is insufficient evidence to recommend routine 

pasteurisation of MOM from CMV-positive women as pasteurisation simultaneously reduces the 

activity of many bioactive factors GOR B 

 Osmolarity and hydrolyzed protein (see supplementary digital content no.17, 

http://links.lww.com/MPG/C974 ) 

Osmolality 

More than 40 years ago an association between hypertonic infant formula and an increased incidence 

of NEC was noted (254) and the American Academy of Pediatrics (AAP) recommended that the 

osmolarity of infant formula should not exceed 400 mOsm/l (approximately equivalent to an 

osmolality of 450 mOsm/kg) (255). However, recent systematic reviews have not found any 

consistent evidence that differences in feed osmolality in the range 300–500 mOsm/kg are associated 

with adverse gastrointestinal symptoms although study interpretation is challenging (256, 257).  

Breast milk fortification increases the osmolality of the milk immediately after addition (up to more 

than 50%), followed by additional smaller increases in osmolality (up to 10%) after storage at 4°C for 

up to 24 h (254, 258-262).  Routine additives and medications can also significantly increase 

osmolality to levels that exceed guidelines from other professional bodies (84, 260, 263). However, 

drugs as well as vitamin supplements often contain carrier molecules that can diffuse across 

membranes without increasing tonicity, and therefore are not likely to present a risk from their 

osmolar load. We consider it prudent to dilute additives in the largest possible volume of feed, to use 

multi component breast milk fortifiers in preference to multiple individual supplements, and to avoid 

simultaneous addition of multivitamins, electrolyte solutions, or other high osmolar substances where 

possible. 
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Hydrolyzed protein  

Hydrolyzed protein has increasingly been used in preterm infant milk formula and fortifiers. Protein 

hydrolysis alters amino acid kinetic, utilization by the gut, and may reduce nutrient utilization 

especially for nitrogen (108) but these formulas are generally regarded as safe and no adverse effects 

on growth or development have been demonstrated in term infants. In preterm infants, RCTs show 

faster gastrointestinal transit with hydrolyzed protein formulas (264-267) and improved nitrogen and 

mineral retention can be achieved with higher protein concentrations or due to other changes in 

formulation or production (268). Effects on growth (269), NEC and feeding advancement vary in 

more recent studies (270-272). Relatively high levels of "advanced glycation end-products" in most 

hydrolyzed formulas have been associated in other settings with development of chronic 

inflammatory, metabolic, or neurodegenerative diseases (273, 274) but the clinical relevance of these 

theoretical concerns is unknown. Finally, the more complex processing required to create safe 

hydrolyzed protein products adds substantially to costs. 

Conclusions, Recommendations 

C1: The available evidence does not allow the definition of an upper safety osmolality threshold for 

enteral feeding of preterm infants. LOE 2+ 

C2: Commercial ready-to-feed milk formula with an osmolality that is at the upper end of the intake 

range may create challenges for clinicians who want to use additional supplements (e.g., iron, 

vitamins, sodium etc.) but avoid excess feed osmolality. LOE 4 

C3: Commercial milk formula differ in the degree of protein hydrolysis (range of Dalton sizes) which 

may be associated with differing functional effects. LOE 3 

C4: In preterm infants hydrolyzed protein formula accelerates gastrointestinal transit and enteral 

feeding advancement but there are no data to show routine use improves long-term outcome. LOE 1+ 

R1: Where supplements or other feed additives are given, these should be added to the largest possible 

volume of milk feed GPP 

R2: Where breastmilk fortification is required, multi component fortifiers should be used in 

preference to multiple individual nutrient supplements. GPP 
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R3: Hydrolyzed protein may be used for early enteral feeding in preterm infants if human milk is not 

available. GOR B  

Supplemental bionutrients (see supplementary digital content no.18, 

http://links.lww.com/MPG/C974 )              Choline 

Choline is a conditionally essential water-soluble nutrient with vitamin-like qualities and is found in a 

wide variety of foods including breastmilk and infant formula. Choline has multiple physiological 

functions including structural roles in cell membrane and myelin synthesis, cell signalling, neuro-

transmitter functions, and DNA methylation. Adults can produce choline in the liver, but de-novo 

synthesis in preterm infants may be limited. There are theoretical risks of toxicity as choline is 

metabolised to trimethylamine oxide, high levels of which may cause liver damage and are associated 

with cardiovascular disease in adults. EFSA recommends that infant formula contain a minimum 

choline concentration of 25mg/100kcal (EFSA 2014). No good studies exist, and no deficiency state 

has been described, but recent studies suggest higher intakes may be beneficial in preterm infants 

(275-277). 

Other suggested food supplements for preterm infants 

Lactoferrin, milk fat globule membrane, nucleotides, inositol, human milk oligosaccharides, lutein, 

zeaxanthin, and bile salt stimulated lipase have all been suggested to have health benefits for preterm 

infants but there is currently insufficient evidence to support the recommendation of any of these 

routinely as a food supplement for preterm infants (LOE varies 1++ to 4).  

Conclusions, Recommendations 

C1: Dietary intakes in preterm infants must include choline because de novo synthesis may be limited 

or compromised but defining minimum and maximum intakes is challenging due to a lack of RCTs in 

preterm infants. LOE 4 

C2: There is no current evidence that preterm infants primarily fed with breastmilk benefit from 

routine choline supplements. LOE 4 

R1: There are no data to support any change in the previous recommended daily intake of choline 8-

55mg/kg/day, although higher intakes appear safe. GPP 
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R2: Milk formula designed for preterm infants should include choline in a concentration designed to 

meet recommended intakes, but additional routine choline supplementation in preterm infants is not 

recommended.  GPP  

Breastmilk fortification (see supplementary digital content no.19, 

http://links.lww.com/MPG/C974 ) 

Human breast milk (HM) is the optimal source of nutrition, but both macro- and micronutrient density 

is insufficient to support optimal growth for most very preterm infants (see supplementary data for 

HM nutrient density). Whilst data on nutrient accretion based on factorial methodology strongly 

support the use of breastmilk fortifiers there is only limited evidence from clinical trials (278). 

Multiple small studies have explored individual protein, fat or carbohydrate supplements or multi-

component fortifier products. Most studies show slightly greater weight, length, and head gain, with 

no consistent adverse effects on NEC, but also no consistent data showing improvements in long-term 

neuro-developmental outcomes. Fortifiers will increase the osmolality of the milk feed (see earlier 

section) and risks bacterial contamination. It is not clear which sub-populations of preterm infants 

benefit most, or whether all very preterm infants should receive them routinely, and there are few data 

on the optimal time to commence fortifiers (279). In lower resource settings, a small number of 

studies have explored using milk formula powder rather than multi-component fortifiers, but no 

studies are large enough to determine potential adverse effects including sepsis and NEC, and the 

nutrient composition of the resulting mixture will be sub-optimal.  

Most fortifiers provide approximately 1-1.1 g of additional protein per 100ml although some provide 

more. Because protein content in human milk decreases over the first 2-4 weeks, a standard regime of 

fortification may not be optimal, and donor human milk (DHM) macronutrient concentrations may be 

lower than for mother’s own milk (MOM). Energy, protein:energy ratios, and the proportion of 

energy provided as fat or carbohydrate also differ between studies making evidence synthesis 

challenging. Whilst pooling of DHM will reduce macronutrient variability, this is not practical when 

using MOM. ‘Adjustable’ fortification using serum urea concentrations (22) may improve growth 

although methodological challenges exist and cut-off values for urea lack a robust evidence base. 
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‘Targeted’ fortification describes various methods including analysis of macronutrient concentration 

at the cot-side (280-282) but could also be utilised when donor milk banks provide data on nutrient 

concentrations of analysed pooled milk. Whilst earlier studies showed inconsistent or no effects on 

growth, more recent studies using better validated human milk analysers and individualised 

supplementation with protein, fat and carbohydrate show promise (283). 

There are strong observational data to show that the use of MOM is associated with a lower risk of 

NEC, and this also seems likely for DHM based on meta-analyses of RCTs, although no single 

adequately powered trial exists (244). It remains unclear whether DHM reduces NEC risk due to the 

presence of beneficial functional components (e.g. HMOs) or whether protective mechanisms 

primarily involve decreasing exposure to bovine proteins or other components. Human milk derived 

fortifiers are now commercially available either as concentrated liquids or lyophilised powders which 

make an exclusive human milk diet possible. Whilst a small number of studies suggesting benefit 

exist, no adequately powered trials to conclusively determine a reduction in NEC solely due to a 

human-milk derived fortifier have been performed, and some studies show slower growth in the 

human versus bovine derived fortifier groups.  

Conclusions, Recommendations  

C1: The protein content of some fortifiers might be insufficient to increase protein concentrations to 

recommended intake levels if the volume of enteral feeds is limited LOE 2 

C2: The optimal time to start fortification is not clear, but early fortification seems to be as safe as 

delayed fortification, may reduce cumulative nutrient deficiencies, and positively influence bone 

metabolism LOE 2+ 

C3: There is variation in the nutrient content of commercially available fortifiers and this may affect 

growth and health outcomes LOE 2 

C4: Adjustable and target fortification strategies may be employed to compensate for variation in 

human milk macronutrient composition, but the optimal strategy is uncertain. DHM may require 

higher levels of fortification compared to MOM LOE 2+ 

C5: Fortifiers derived from human milk may reduce the risk of NEC but there are insufficient data 

from adequately powered studies to determine the optimal strategy LOE 2+ 
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R1: We recommend the use of multi-component fortifier products to enhance the nutrient content of 

human milk fed and to promote growth in preterm infants GOR A 

R2: We recommend starting fortifier when enteral intakes reach 40 – 100 ml/kg/d.   GOR C  

R3: Individualised fortification strategies including adjustable and targeted approaches may be 

appropriate. GOR A 

R4: There is insufficient evidence to recommend the routine use of human milk derived fortifiers until 

further high-quality data is available. GOR C 

Disclaimer: ESPGHAN is not responsible for the practices of physicians and provides 

position papers as indicators of best practice only. Diagnosis and treatment is at the discretion 

of the healthcare provider. 
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Supplementary digital content (SDC)  

1. Introduction, methods and limitations 

2. Human milk nutrient concentrations: evidence base and justification 

3. Water 

4. Energy 

5. Protein 

6. Lipids 

7. Carbohydrates 

8. Sodium, chloride and potassium 

9. Minerals: calcium, phosphorus and magnesium 

10. Trace elements 

11. Water soluble vitamins 

12. Fat soluble vitamins 

13. Feeding mode: minimal enteral feeding, feed advancement, gastric residuals and 

timeline of parenteral and enteral nutrition 

14. Feeding mode: gastric tube and bolus or continuous feeding 

15. Growth 

16. Breastmilk: buccal colostrum, donor human milk, and risk of CMV infection 

17. Hydrolysed protein and osmolality  

18. Supplemental bionutrients: lactoferrin, choline, milk fat globule membrane, human 

milk oligosaccharides, bile salt stimulated lipase, lutein and nucleotides 

19. Breastmilk fortification 
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Table 1. ESPGHAN CoN recommendations for enteral nutrient intakes 

 ESPGHAN 2010 
Recommendation 

ESPGHAN 2022 
Recommendation 

Fluid (ml/kg/day) 135-200 150-180 (135-200) 

Energy (kcal/kg/day) 110-135 115-140 (-160) 

Protein (g/kg/day) 3.5-4.5 3.5-4.0 (-4.5) 

Fat (g/kg/day) 4.8-6.6 4.8-8.1 

Linolenic acid (mg/kg/day) 385-1540 385-1540 

a-Linoleic (mg/kg/day) >55 ≥55 

DHA (mg/kg/day) 12-30 30-65 

ARA (mg/kg/day) 18-42 30-100 

EPA (mg/kg/day) - < 20 

Carbohydrate (g/kg/day) 11.6-13.2 11-15 (-17) 

Sodium (mmol/kg/day) 3.0-5.0 3.0-5.0 (-8.0) 

Chloride (mmol/kg/day) 3.0-5.0 3.0-5.0 (-8.0) 

Potassium (mmol/kg/day) 1.7-3.4 2.3-4.6 

Calcium (mmol/kg/day) 3.0-3.5 3.0-5.0 

Phosphorus (mmol/kg/day) 1.9-2.9 2.2-3.7 

Magnesium (mmol/kg/day) 0.3-0.6 0.4-0.5 

Iron (mg/kg/day) 2-3 2.0-3.0 (-6.0) 

Zinc (mg/kg/day) 1.1-2.0 2.0-3.0 

Copper (µg/kg/day) 100-132 120-230 

Selenium (µg/kg/day) 5-10 7-10 

Manganese (µg/kg/day) <27.5 1-15 

Iodine (µg/kg/day) 11-55 11-55 

Chromium (µg/kg/day) 0.03-1.23 0.03-2.25 

Molybdenum (µg/kg/day) 0.3-5 0.3-5.0 

Thiamine (B1) (µg/kg/day) 140-300 140-290 

Pantothenic acid (mg/kg/day) 0.33-2.1 0.6-2.2 

Biotin (µg/kg/day) 1.7-16.5 3.5-15 

Niacin (µg/kg/day) 380-5500 1100-5700 

Ascorbic acid (vitamin C) (mg/kg/day) 11-46 17-43 

Riboflavin (B2) (µg/kg/day) 200-400 200-430 

Pyridoxine (µg/kg/day) 45-300 70-290 

Folic acid (µg/kg/day) 35-100 23-100 

Cobalamin (B12) (µg/kg/day) 0.1-0.77 0.1-0.6 

Vitamin A (iU/kg/day) 1333-3300 (400-1000µg 
retinol ester/kg/d) 

1333-3300 (400-1000µg 
retinol ester/kg/d) 

Vitamin D (iU/kg/day) 800-1000 iU/day 400-700 iU/kg/day (<1000) 

Vitamin E (mg/kg/day) 2.2-11 2.2-11 

Vitamin K (µg/kg/day) 4.4-28 4.4-28 

Footnote: figures in brackets represent ranges or upper intakes that might occasionally be needed in 

routine clinical practice under certain conditions. See text for details. 
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