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Thermodynamics:

« Conservation of energy (1t law)
 Entropy willincrease (2"9 law)
 Thermal equilibrium (0" law)



Calorimetry =
‘“‘measuring heat”




nh _

Lavoisier's ice calorimeter, anno 1782 (7)

 Heat and COZ2 production from animal respiration
*  Similar heat and CO2 production from combustion




Tension cylinder
equaliser

Sulphuric

Atwater and Benedict respiration chamber, late 19" century



Components of EE

100

- Intensity
- Duration
- Body weight
- Genetics

- Amount of food & compositio
- Hormones/SNS

- Body weight
- Height
- Fat free mass
(SMM + OM)
- Fat mass
- Age
- Gender
- Hormones
(thyroid, leptin, insulin etc.)
- SNS

Soares, European J Clin Nutr 2018



The theoryof IC

 DCis measuring heat (energy).

* All energy comes from redox reactions.

* The conversion of O, to CO, is fundamental to all
redox reactions in humans.

* Measuring VO, + VCO, production + assumptions
can estimate energy liberated in redox reactions.



Gas exchange for combustion of COH, fat and protein

Glucose

Protein




VO, = 0.83*COH + 2.02*Fat + 6.04*U,
VCO, = 0.83*COH + 1.43*Fat + 4.89*U,

CHO,, = 4.12 VCO2 — 2.91 VO2 — 2.54 UN
F . =1.69 V02— 1.69 VCO2 — 1.94 UN



FE = 4.18*COH + 9.46*Fat + 27*U,

EE =394 V02 +1.11 VCO2 —2.17 UN

FE=55V02 +1.76 VCO2 — 2.1/ UN



The ratio of VCO2/VO2 (RQ) will also give an indication
of what's being oxidized:

e Pure COH oxidation = RQ of 1.0
 Pure fat oxidation = RQ of O.7
* Anything in-between = mixed substrate oxidation

The non-protein RQ can be calculated when UN is known, but is
not very reliable in non-steady state urea pool (i.e., in ICU).



Theoretical limitations

1. What’s being oxidized?
2. Steady-state pool size?



1. What’s being oxidized?

* Weir (EE) equation assumes all O2 disappearance and CO2 appearance is from
COH, Fat and Prot oxidation. True?
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1. What’s being oxidized?

* Weir (EE) equation assumes all O2 disappearance and COZ2 appearance is from
COH, Fat and Prot oxidation. True?

* Probably not true in ICU patients. Other metabolic pathways at play...
* Gluconeogenesis (RQ O.13 if powered by beta-ox)
* Ketogenesis (RQ O)
* Ketone body oxidation (RQ 0.9-1)
* Lipogenesis (RQ 5.6)
e Ethanol oxidation (RQ 0.67)



1. What’s being oxidized?

* Weir (EE) equation assumes all O2 disappearance and COZ2 appearance is from
COH, Fat and Prot oxidation. True?

* Probably not true in ICU patients. Other metabolic pathways at play. ..
* Gluconeogenesis (RQ O.13 if powered by beta-ox)
* Ketogenesis (RQ O)
* Ketone body oxidation (RQ 0.9-1)
* Lipogenesis (RQ 5.6)
* Ethanol oxidation (RQ 0.67)

* Indirect calorimetry tells you nothing about the ratio of endogenous/exogenous
substrates being oxidized!



Is this a problem?

* Intermediate steps don't matter if the metabolic fate is the same.
* For example, lipolysis = ketogenesis => ketone oxidation will have same
net VO2/VCO2, RQ and energy yield as complete lipid oxidation.



Is this a problem?

* Intermediate steps don't matter it the metabolic fate is the same.
* For example, lipolysis = ketogenesis = ketone oxidation will have same
net VO2/VCOZ2, RQ and energy yield as complete lipid oxidation.

* This may be a problem if net production exceeds oxidation or non-oxidative
disposal at play, ex
* Net lipogenesis (overfeeding = high RQ)
» Ketones retained or excreted in urine (low RQ)
* Net gluconeogenesis with non-oxidative glucose disposal (low RQ)
* Ethanol oxidation (low RQ)



2. Steady state conditions

* Body O2 pool is very small (~ 1000 ml), 3-4 x VO2.
* Changes in respiration have negligible effect on oxygen transport and thus
measured VOZ.
* Increased metabolic activity will quickly be reflected in measured VO2



2. Steady state conditions

* Body O2 poolis very small (~ 1000 ml), 3-4 x VOZ2.
* Changes in respiration have negligible effect on measured VO2.
* Increased metabolic activity will quickly be reflected in measured VOZ2

* Body COZ2 pool is very large (~ 20 L), 100 x VCO2,
* Measured VCO?Z is extremely dependent on steady state respiration



Is this a problem?

* Perturbations in CO2 pool can take hours to stabilize
* Hyperventilation = false elevation of VCOZ2, high RQ
* Hypoventilation = false depression of VCOZ2, low RQ
* Elevation in true VCOZ2 in fixed MV = measured VCOZ2 will lag behind



Is this a problem?

* Perturbations in CO2 pool can take hours to stabilize
* Hyperventilation = false elevation of VCOZ2, high RQ
* Hypoventilation = false depression of VCOZ2, low RQ
* Elevation in true VCOZ2 in fixed MV = measured VCOZ2 will lag behind

* This matters when IC is used in research and for interpretation of RQ
(~substrate oxidation)



Is this a problem?

* Perturbations in CO2 pool can take hours to stabilize
* Hyperventilation = false elevation of VCO,, high RQ
* Hypoventilation = false depression of VCO,, low RQ
* Elevation in true VCOZ2 in fixed MV = measured VCOZ2 will lag behind

* This matters when IC is used in research and for interpretation of RQ
(~substrate oxidation)

* C(linically the consequence for variable of interest is small, as VOZ2 has a much
greater impact on EE.



Troubleshooting

1. 1s VO2 and VCO?Z fairly constant during measurement?

2. Does RQ reflect mixed substrate oxidation (0.8-0.9)7

3. If not...
 Was MV stable 1-2 h prior/during measurement? If yes...
* High RQ => is the patient overfed?
* Low RQ =2 is the patient catabolic/in ketosis/drunk?

4. Be skeptical regarding measurements with a very high (2 1) or very low
(= 0.7) RQ. Unlikely that patient is only using glucose or lipids as fuel...



Practical limitations

1. How is gas exchange measured?
2. Potential sources of error?
3. Patient-specific factors



1. How is gas exchange measured?

* Nearly all modern instruments use a breath-by-breath technique
* @Gas is sampled in inspiratory limb and in proximity of ETT
* Tidal volume is measured by differential pressure flow meter




FeCO,

A
» Time
Flow
A
» Time







2. Pitfalls (pt 1)

* Synchronizing gas concentrations with volumes is complex at/when...
* High airway pressures
* High respiratory rates
* Increased dead space introduced in circuit

* Humidity can interfere with sensors and calculations of gas volumes



2. Pitfalls (pt 2)

 VOZ is ideally calculated as insp and exp conc*volume
* Often just one volume is used, assuming no N2 exchange in lungs
* Equation to calculate VOZ2 can be derived from just Ve, but behaves non-linearly

at high FiO2 (>0.7)
* Most manufacturers don't recommend performing measurements above

this threshold



3. Patient-specific factors

* |s the measurement representative?

* Resting conditions?

* [ever, shivering, cooling?
* Presence of gas leak in ventilator tubing or patient?
* [kxtracorporeal CO, removal?

* (O, removal during CRRT insignificant

Jonckheer et al, Clinical Nutr 2020



Take-home messages

* Indirect calorimetry is a monitor that measures VO, and VCO,

* Understanding the theoretical, practical and patient-specific limitations
s essential to correctly interpret derived variables

* With attention to detall, reliable in majority of patients
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The IC in ICU: should we be
routinely using it?



NT TO
'BELIEVE



The case against



RCT:s >100 pts...

o [ICACOS (2011)

o EAI-ICU (2018)

* Azevedo et al (2019)

o [ICACOS International (2020)

Singer et al, ICM 2011; Singer et al, Clin Nutr 2020; Allingstrup, Intensive Care Medicine 2018;
Azevedo et al, Rev Brasiliera de Terapia Intensiva 2019



Duan et al. Crit Care (2021) 25:88

https://doi.org/10.1186/513054-021-03508-6 C rltl 'Ca | Ca re

RESEARCH Open Access
®)

Energy delivery guided by indirect

calorimetry in critically ill patients: a systematic
review and meta-analysis

Jing-Yi Duan', Wen-He Zheng?, Hua Zhou', Yuan Xu' and Hui-Bin Huang'

Lower short-term mortality, RR 0.7/ (p = 0.03). 7



.

IC
Study or Subgroup Events Total

Predictive equation
Events Total

Risk Ratio

Weight M-H, Fixed, 95% CI

Risk Ratio
M-H, Fixed, 95% CI

Singer 2011 21 65
Yang 2016 1 30
Allingstrup 2017 30 100
Gonzalez-Granda 2018 5 20
Zhao 2019

Singer 2020

Total (95% CI) 444
Total events 84

31 65
7 30
32 99
3 20
29

443
109

Heterogeneity: Chi*=5.16,df=5(P=0.40); F= 3%

Test for overall effect. Z= 211 (P=0.03)

28.4%
6.4%
29.5%
2.7%
6.4%
26.6%

100.0%

0.68 [0.44, 1.05)
0.14[0.02,1.09)
0.93[0.61,1.40]
1.67 [0.46, 6.06)
0.71 [0.26, 1.99]
0.76 [0.45,1.27]

0.77 [0.60, 0.98]

+

4

1 10 100

Favours IC Favours predect equation

Fig. 2 Forest plot showing the effects of energy delivery guided by indirect calorimetry on short-term mortality rate in critically ill patients
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No consistent estimate in different meta-analyses

Figure 1. Overall Mortality
Indirect calorimetry Predictive equations Risk Ratio Risk Ratio

Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl Year M-H, Random, 95% CI
Saffie 3 26 z 23 1.5% 1.33 [0.24, 7.26] 1990

Singer 2011 16 56 27 56 17.0% 0.59 [0.36, 0.97] 2011 —

Yang 1 30 7 30 1.0% 0.14 [0.02, 1.09] 201&

Allingstrup 20 100 21 09 14.1% 0.94 [0.55, 1.63] 2017

Gonzales-Granda 5 20 3 20 2.6% 1.67 [0.46, 6.06] 201B

Zhao 5 29 7 20 41X 0.71 [0.26, 1.98] 2019
Azevedo 26 57 29 63 26.7% 0.99 [0.67, 1.46] 2019
Singer 2020 45 209 53 208 33.0% 0.84 [0.60, 1.20] 2020

Total (95% CI) 527 528 100.0% 0.84 [0.68, 1.04]

Total events 121 149
Heterogenelty: Tau® = 0.00; ChE = 7,19, df = 7 (P = 0.41); F = 3%

Test for overall effect: Z = 1.62 (P = 0.11) 0.1 0.2 0.5

Favours IC Favours PEqu

Heyland et al, criticalcarenutrition.com 2021 Watanabe et al, Nutrients 2024



Study/year Mean energy delivered/day,
kcal/day, mean = SD

IC results in higher energy

. delivery...

Singer 2011 [7] 2086 + 460

Landes 2016 [22] | NR \R Frequently no more than
Allingstrup 2017 877 e 106 37 2 5‘ BO% d Iffe rence.

20
Gonzalez-Granda
2018 [21]

Shi 2019 [13]
Zhao 2019 [15]

Singer 2020 [14]

Yang 2016 [23]
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The (non-evidence
based) case in favor






We know that predictive equations to estimate
metabolic rate perform poorly in individual ICU
patients.



s there any clinical relevance to getting it wrong?
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Signal of harm from prolonged underfeeding very

dif

icult to detect in RCT:s of general ICU patients.



Large cumulative errors (+/-) are probably bad.



My opinions

* During first week in ICU, probably no benefit to IC over

conservative energy delivery
* Farly IC may avoid overteeding in patients with very low

metabolic rate
* |n patients with IMV >7-10 days, IC should be used

repeatedly to avoid significant over/underfeeding



My opinions

NUTRITION AND THE INTENSIVE CARE UNIT: EDITED BY MICHAEL P CASAER AND ADAM M DEANE

Indirect calorimetry: should it be part of routine
care or only used in specific situations?

Sundstrém Rehal, Martin®P: Tatucu-Babet, Oana A.© QOosterveld, TimoP

Author Information®

Current Opinion in Clinical Nutrition and Metabolic Care 26(2):p 154-159, March 2023. | DOI:
10.1097/MC0.0000000000000895 (c<)




Tack (thanks)




Further reading

* "Handbook of gas exchange and indirect calorimetry”, Jukka Takala &
Pekka Merilainen

* Ferrannini E: "The theoretical bases of indirect calorimetry: a review,
Metabolism, Vol 37, No 3 (March),1988:pp287/-30

* Simonson DC, Dekronzo RA. Indirect calorimetry: methodological and
interpretative problems. Am J Physiol. 1990 Mar;258 (3 Pt 1):E399-

41°2.
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